
Cassandra Availability with Virtual Nodes

Joseph Lynch
joe.e.lynch@gmail.com

josephl@netflix.com

Josh Snyder
josh@code406.com

joshs@netflix.com

April 16, 2018

1 Introduction

When Cassandra introduced vnodes in version 1.2, the database made new
trade-offs with respect to cluster maintainability and availability [1] [2]. In
particular, large Cassandra clusters became easier to scale and operate, but
they lost availability during temporary or permanent node failures.

The two main benefits of vnodes are that the variance in data size held by any
one host decreases, and that operators can more easily change the number of
hosts participating in a cluster. In return, vnodes trade-off availability during
node failures. As we document in this report, the availability cost of vnodes is
both quantifiable and unavoidable. We present a model of the availability of
a single-datacenter Cassandra cluster under failures. We attempt furthermore
to predict, for a given cluster configuration, what availability guarantees can
feasibly be promised to users of the database.

Based on our model, we conclude that the Cassandra default of 256 virtual nodes
per physical host is unwise, as it results in steadily rising chance of unavailability
as cluster size grows. This increasing failure rate is antithetical to Cassandra’s
design goal of fault-tolerance. We further use the model to argue for a number
of possible solutions which both achieve operability goals of vnodes while at the
same time providing much higher fault-tolerance, especially for large clusters
(hundreds of nodes).

Section 2 introduces basics of the Cassandra data placement algorithm, and Sec-
tion 3 discusses situations that can degrade Cassandra service. Readers already
familiar with Cassandra operations may wish to skip to Analysis (Section 4) or
Solutions (Section 4.3).

1

2 Cassandra Background

Data in Cassandra is distributed across the cluster hosts according to a consis-
tent hashing algorithm. All data has a partition key, which Cassandra hashes to
yield an integer bounded within the hash space. Each host in the cluster takes
responsibility for storing data along one or more contiguous ranges of the hash
space as decided by the replication strategies assigned to the keyspaces on the
cluster.

Cassandra clusters achieve fault-tolerance in the SimpleStrategy and
NetworkTopologyStrategy replication strategies by storing multiple copies of
each piece of data. The quantity of copies (replication factor) is configurable,
but is typically an odd number, with three being most common. Higher repli-
cation factors achieve greater fault-tolerance, at the cost of increased storage
requirements.

Hosts in a Cassandra cluster are assigned one or more tokens which represent
positions in a hash space created by the hashing function. Having more than
one token per physical host leads to “virtual” nodes. The start of each range is
variable, depending on the location of tokens held by other nodes in the cluster.
The intervals in the hash space between tokens are known as token ranges and
are the basis of all data replication. Depending on the keyspace replication
strategy, and the placement of the “virtual” nodes, different physical hosts will
be chosen to store data in a token range. For example, to achieve a replication
factor of two using SimpleStrategy, Cassandra assigns two different physical
hosts to each token range, while with NetworkTopologyStrategy Cassandra
adds additional constraints to assure that data is replicated between racks and
across datacenters.

3 Problem

In Cassandra’s data placement strategy with a replication factor of three, avail-
ability is compromised when at least two hosts holding intersecting token ranges
become unavailable to serve traffic. Practically speaking, unavailability results
when a second node fails so quickly that the first hasn’t had time to recover.
Prior attempts have been made to model Cassandra’s failure modes [4], but
they often do not take into account the recovery aspect of Cassandra where it
automatically restarts after process failure or in the case of permanent failure
streams lost data to new hosts 1. We approach the problem from a different
direction, opting instead to model outages as a combination of losing a sin-
gle node plus losing a neighboring node that owns an intersecting token range
before recovery finishes, causing UnavailableExceptions to clients operating

1Not exactly automatically, but with the right automation it can be automatic

2

https://github.com/Netflix/Priam

at QUORUM consistency levels. We consider any unavailability of the ring to be
unacceptable to customers, whether it is of a large portion of the ring or small.

4 Analysis

We conduct our analysis on a cluster with replication factor 3 (R = 3). Under
R = 3, the failure of two nodes with a shared token range leaves their shared
token range(s) with only a single active node. The remaining node can continue
to serve reads and writes, but cannot produce a quorum.

Without virtual nodes, a host in an RF = 3 cluster would inter-depend on 4
other hosts: its two left-neighbors and two right-neighbors. If the cluster is
small enough, the same node may serve as both a left-neighbor and a right-
neighbor. For example on a cluster with three hosts, each node inter-depends
with two others; with four hosts each node has three inter-dependents; and with
five or more hosts each node has four inter-dependents. When a brand new host
places 256 virtual nodes into the ring, each vnode it places inter-depends with
2-4 other nodes.

By adding multiple token ranges to the responsibility of a single server, virtual
nodes increase inter-dependency and decrease availability by coupling physical
hosts together. Conversely, they theoretically increase the speed at which nodes
can recover data by streaming2.

Whenever it was necessary to build assumptions into the model, we chose them
to make the model underestimate outages.

For the purposes of this analysis:

let: n = number of hosts in the cluster
λ = average failure rate of hosts (1/interval)
S = size of the dataset per host (MB)
v = number of tokens per physical host
R = replication factor (number of replicas per token)
Binc = maximum incoming bandwidth of a joining physical host (MB/s)
Bout = maximum outgoing bandwidth of a stream (MB/s)

n and S are details of a particular Cassandra deployment, v and Bout are config-
uration options in cassandra.yaml, R is determined by the keyspace replication
strategy and λ and Binc are determined by the hardware Cassandra is deployed
to (Binc is also impacted by how efficiently Cassandra streams data, which we
take into account with an arbitrary adjustment in the model).

2In our experience, at least with Cassandra 2.x and 3.0.x, inbound streaming tops out at
significantly under network hardware capacity, but this simply makes this model underestimate
outages

3

4.1 Availability Model

Crucial to the availability calculation is how quickly nodes recover: E[Trecovery].
The longer a host takes to recover, the longer a second failure can occur and
cause an outage.

We model the recovery time of a host failure in Eq. 1 by taking the dataset S
and dividing it by the rate at which a recovering node can stream data from
peers. To determine the speed, we must determine how many neighbors the
node can stream from, which we model as a variant of the Birthday Problem
[6]. For each token, we choose a random 2 ∗ (R − 1) replica hosts (1b), those
that precede and those that follow the token on the Cassandra ring. This is
an underestimate of how many neighbors each additional token adds because
actual Cassandra replication prohibits duplicates [5]. We then make the model
underestimate outages further by assuming rack awareness, and that the number
of racks equals R, which eliminates n

R nodes from being possible replicas (1c).
Finally we can determine the number of expected neighbors, E[nneighbors] by
applying the formula for the number of distinct items expected from k draws
of np items in 1d. To find the final recovery time we assume that the node is
being replaced with replace address rather than with removenode 3, so we
only consider the incoming bandwidth of a single host (1e). This leads to 1f
and concludes the recovery model.

E[Trecovery] =
S

speed
(1a)

k = v ∗ (2 ∗ (R− 1)) (1b)

np = n− n

R
(1c)

E[nneighbors] = np ∗ [1− (1− 1

np
)k] (1d)

speed = min(Binc, E[nneighbors] ∗Bout) (1e)

E[Trecovery] =
S

min(Binc, E[nneighbors] ∗Bout)
(1f)

This is a very conservative model, meaning that in reality vnodes would likely
have a higher impact (e.g. because more nodes can be neighbors and may
not have racks=R), but for cloud environments like AWS where Cassandra
racks generally map 1:1 with availability zones this kind of model is reasonably
accurate. This model gives us what we dub the “critical window” where any
neighbor failing will cause a token range to lose quorum.

From Eq. 1 we can see that as v increases, we get faster streaming until we

3See Section 4.3.3 for a discussion of why we think this replacement model is more appro-
priate for production

4

reach diminishing returns because we have saturated the inbound network of
the joining node. At that point additional streams do not help speed recovery.

Now that we can model the expected recovery time, we begin the failure model
by assuming that hosts fail as independent Poisson processes with parameter λ.
Note that modeling host failures as a Poisson process represents a “best case
scenario” for cluster availability: real-life computers are not so polite that they
fail in a manner completely uncorrelated with their peers.

Under such a model the inter-arrival time of host failures follows an exponential
distribution with parameter λ, and therefore once a single host failure happens,
we lose a second replica of an overlapping range before the recovery finishes with
probability:

P (outage|failure) = F (τ ;λeff) (2a)

P (outage|failure) = 1− e−λeff∗τ (2b)

τ = E[Trecovery] (2c)

λeff = E[nneighbors] ∗ λ (2d)

P (outage|failure) = 1− e−E[Trecovery]∗E[nneighbors]∗λ (2e)

Equation 2b follows from the CDF of an exponential distribution with parameter
λeff , and equation 2c and 2d follow because we only care about failures during
the recovery period of the neighboring hosts (which form a combined Poisson
process with effective parameter λeff).

Now, if we model each host as a splitting Poisson process with parameter λ
and splitting probability P (outage|failure), then each node forms an outage
Poisson process with parameter λsplit = λ ∗ P (outage|failure). If we then join
the n such processes, we have a resulting global Poisson process with parameter
λglobal = λsplit ∗ n. This yields Eq. 3, which models the average number of
outages over an interval τ .

E[outages] = λglobal

= (n ∗ λsplit)
= (n ∗ (λ ∗ P (outage|failure)))
= (n ∗ (λ ∗ (1− e−E[Trecovery]∗E[nneighbors]∗λs)))

(3)

From this model we can see that availability is compromised by increasing the
number of nodes (n), increasing the failure rate of those nodes (λ), increasing
the number of neighbors (via v), or decreasing the recovery speed. To see how
badly availability reacts with plausible default settings on a 96 node cluster in
a cloud environment with machine failure rate λ = 25

century = 0.25
year .

5

let: n = 96
λ = 25 1

century (= 0.25 1
year = 7.9e-9 1

s)

v = 256
R = 3
S = 307,200 (MB, 300 gigabyte)
Binc = 125 (MB/s, 1 gigabit)
Bout = 25 / 2 = 12 (MB/s, 100 megabit)

We model this over a century because the probabilities of outage are so low in
a single cluster that in any reasonable time span, the most likely number of
outages is zero. To fairly compare the different configuration options, we model
this system for a century and find that, on average, we expect 2.98 outages, or
equivalently 0.03 per year:

A = 96 ∗ 25 ∗ (1− e−E[Trecovery]∗E[nneighbors]∗λs)

= 96 ∗ 25 ∗ (1− e−2457∗64∗7.927e−9)

= 2.98

(4)

In the case with only 4 vnodes, the availability is much better with only 0.35
failures per century = 0.0035 failures per year, a full 10x more availability!

A = 96 ∗ 25 ∗ (1− e−E[Trecovery]∗E[nneighbors]∗λs

= 96 ∗ 25 ∗ (1− e−2457∗7.5∗7.927e−9)

= 0.35

(5)

We can clearly see in Fig.1 that small numbers of vnodes do not appreciably
change availability (due to the streaming benefits), but as the number of vnodes
gets large we rapidly lose large amounts of availability until we level out after
the number of vnodes passes the number of nodes. In fact, for this particular
λ, the median number of outages is still zero until v = 5.

In Fig.2 we see the effects of varying the failure rate of machines, and observe
that this has a significant impact on the availability of a Cassandra cluster
running with vnodes. In particular, doubling the rate of machine failures can
more than double the expected number of outages. This makes intuitive sense
because as we add more tokens to each physical node, we are increasing the
number of vulnerable replicas during a single node failure. Rack placement
helps a lot to limit the number of potential replicas to only those residing in
other racks, but it is not enough to prevent likely outage with a high number of
tokens per node.

6

Figure 1: Outages with Small Number of Tokens per Node

Figure 2: Outages with Varying Tokens per Node

7

It is also interesting to note that as clusters get larger, holding everything else
constant, they become less available. This intuitively makes sense because as you
increase the number of hosts significantly past RF, you are creating more replicas
that can fail and be vulnerable to a second failure. Virtual nodes significantly
exacerbate the problems for large clusters (n > 200) causing substantially more
outages at large cluster sizes. This is shown in figure Fig. 3 and Fig. 4 .
Fig 3 is particularly interesting because we can see with 256 vnodes, we rapidly
approach an expected failure every year, compared to 16 vnodes where we expect
an outage closer to every decade.

Figure 3: MTBF with Varying Nodes in the Cluster

However, as can be seen in Fig. 5, small clusters (≤ 16 for NetworkTopologyStrategy
or ≤ 12 for SimpleStrategy) are not appreciably impacted by vnodes because
all their hosts are already neighbors with every possible host. As the cluster gets
bigger, small clusters have a constant number of neighbors, but large clusters
gain more and more neighbors, leading to 10-20x more risk of failure.

8

Figure 4: Outages with Varying Nodes in the Cluster

Figure 5: Outages with Varying Nodes in the Cluster

9

The odd wiggle pattern you can see happens because rack awareness removes
n/R hosts from consideration; the SimpleStrategy graph is more smooth but
also much less available in Fig 6.

Figure 6: Outages with Varying Nodes in the Cluster

Clearly, while 4 or 16 virtual nodes do not appreciably impact availability, the
default of 256 is quite unacceptable for large clusters.

4.2 Virtual Nodes, the Benefits

Having a number of tokens greater than one per physical host trades off avail-
ability, but it gains data distribution and operations benefits. In particular, a
major problem pre-vnode was “hot” nodes, where one replica may have signif-
icantly more data than other nodes. This was particularly problematic when
scaling up the cluster because in order to keep data evenly distributed you had
to effectively double the cluster. In particular to add capacity to a cluster of size
n with v vnodes you need proportionally fewer new nodes N to do so. Now that
Cassandra token placement is reasonably good at inserting new tokens where
they are needed to balance the ring [9], we can model the number of nodes
needed to scale up with Eq. 6 as seen in Fig. 7.

N =
⌈n
v

⌉
(6)

10

As we can clearly see, as we add more vnodes we must add fewer physical hosts
to the cluster at a time in order to keep it balanced. While 1 token per host
requires doubling, 16 tokens per host reduces this, naturally, by a factor of 16,
which is a significant improvement. For a 96 host cluster instead of needing 96
more machines, we can add in increments of 6. The operational savings only
get better as we add more tokens per host, until we reach the size of the cluster
at which point we reach diminishing returns.

Figure 7: Nodes Required for Scaling Up

4.3 Solutions to the Availability Problem

There are a number of solutions to the availability problem caused by vnodes
with various trade-offs. We briefly discuss some here:

4.3.1 Solution 1: Change the Number of vnodes

A simple solution to the availability problem is to make the trade-off less drastic.
Moving to 4-16 tokens per node achieves almost all of the benefits of vnodes,
while trading off significantly less availability. For example a setting of 16 gives
10x better availability than 256 while still having 10x easier scaling than a single
token [10].

11

4.3.2 Solution 2: Decouple Data Transfer from Recovery

An elegant solution to this problem is to use networked attached storage such
as EBS [11]. With a high reliability, low latency, network block device like
AWS EBS gp2, Eq. 1 becomes a fixed constant of roughly five minutes. This
increases availability by multiple orders of magnitude as replacement no longer
varies with data size. Multiple tokens per host still reduce availability (since
neighbors is still higher), but it is much less significant. Figure 8 shows just
how much availability clusters can get by using EBS to store their data. The
gains are even higher for large datasets (this model only has 300GB, if it were
2TB the gains would be significantly higher).

Figure 8: Availability Under Differing Recovery Strategies

4.3.3 Solution 3: Replacing Hardware via removenode

There is an alternative streaming model where instead of replacing a failed node
with replace address, the operator runs removenode on the dead node. This
recovers the cluster to full replication rapidly as all nodes are participating in
the re-replication of data, but simply with one fewer node present [8]. The
subsequent bootstrap may take a long time, but that time is not spent at risk
of outage. This technique is strictly dominated by replace node for single
token clusters because the data must be streamed twice, but for multiple token
per node clusters it can make the availability much higher because removenode

12

theoretically involves almost every node in the cluster transferring data between
themselves, which decreases E[Trecovery] in Eq. 3 and limits outage.

This approach is likely unwise in production, however, as unlike replace address,
removenode causes operational load on nodes that are simultaneously doing la-
tency sensitive query workloads. In particular removenode causes the following
unique impacts (versus replace node) to hosts taking latency sensitive queries:

1. Inbound network traffic

2. Disk IO and CPU cycles to write the data to disk (and later clean it up)

3. Loss of OS disk cache for data that will be invalidated shortly

Inbound network traffic is particularly problematic because unlike outbound
network traffic which can be effectively be controlled via QoS [12], inbound net-
work traffic is very difficult to insulate query traffic from, and would likely cause
operational impact. In contrast, with replace address the cluster operator can
use tc-fq insulate query traffic from the streaming flows [13]

This approach would require significant production vetting before we believe it
is a viable alternative to the production hardened replace node approach.

4.3.4 Solution 4: Stop Using vnodes Entirely

An alternative way to solve the operational pain of large Cassandra clusters,
while maintaining availability, is to use moves rather than tokens to re-balance
data in a cluster [14][15]. This could either happen through a central planner
which determines the optimal state of the cluster, or some kind of distributed
greedy algorithm. Now that Cassandra has good streaming via the Netty refac-
tor, this appears to be a very plausible approach and has additional benefits in
repair and scaling (simultaneous bootstrap).

5 Conclusion

We have shown using a reasonable model that using a number of tokens per node
greater than the number of physical nodes in the cluster significantly increases
the expected outages, with default settings causing orders of magnitude more
frequent outages. This availability is traded away for more even distribution
of data and the ability to add or remove fewer nodes and still maintain even
distribution. We have proposed a number of possible solutions, but we believe
the current cassandra.yaml setting of 256 tokens per node has significantly
decreased Cassandra cluster availability, especially at large cluster sizes, and
are interested in improving the situation. Regardless of how the Cassandra
community chooses to solve this problem, we believe it is worth understanding
how vnodes have changed the math.

13

References

[1] Brandon Williams: Virtual nodes in Cassandra 1.2 https://www.datastax.

com/dev/blog/virtual-nodes-in-cassandra-1-2

[2] Sam Overton: RFC: Cassandra Virtual Nodes https://www.

mail-archive.com/dev@cassandra.apache.org/msg03837.html

[3] Karger, et. al. Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web https://dl.

acm.org/citation.cfm?id=258660

[4] Martin Kleppmann: The probability of data loss in large clusters https:

//martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.

html

[5] Cassandra Data replication, NetworkAwareTopologyStrategy

https://docs.datastax.com/en/cassandra/latest/cassandra/

architecture/archDataDistributeReplication.html

[6] Kyle Siegrist: The Birthday Problem http://www.randomservices.org/

random/urn/Birthday.html

[7] Apache Software Foundation: Replacing a Dead Node http://cassandra.

apache.org/doc/latest/tools/nodetool/removenode.html

[8] Apache Software Foundation: nodetool removenode http://cassandra.

apache.org/doc/latest/tools/nodetool/removenode.html

[9] Branimir Lambov: New token allocation algorithm in Cassandra 3.0 https:

//www.datastax.com/dev/blog/token-allocation-algorithm

[10] Chris Lohfink: Lower default num tokens https://issues.apache.org/

jira/browse/CASSANDRA-13701

[11] Jim Plush and Dennis Opacki: Amazon EBS & Cassandra https://www.

youtube.com/watch?v=1R-mgOcOSd4

[12] Bert Hubert et al.: Linux Advanced Routing & Traffic Control http://
lartc.org/lartc.html#LARTC.QDISC

[13] Eric Dumazet: Fair Queue packet scheduler https://lwn.net/Articles/
565421/

[14] Apache Software Foundation: nodetool move http://cassandra.apache.

org/doc/latest/operating/topo_changes.html#moving-nodes

[15] Stu Hood: Automatic, online load balancing https://issues.apache.

org/jira/browse/CASSANDRA-1418

14

6 Appendix

Source code for all graphs is available on github as well as reproduced below.

1
2 # coding: utf -8

3
4 # In[1]:

5
6 from __future__ import print_function

7 import math

8 import matplotlib

9 import numpy as np

10 import matplotlib.pyplot as plt

11 import matplotlib.patches as mpatches

12 from scipy.stats import poisson

13 from scipy.stats import expon

14
15 get_ipython ().magic(u’matplotlib inline ’)

16
17 # Boils down to "If I pick hosts 2 * (rf - 1) * vnode times , how

many

18 # distinct hosts will I have in expectation ". Note that this is a

slightly

19 # optimistic estimate because Cassandra won’t place two replicas

of the

20 # same token on the same machine or rack , but this is close enough

for

21 # the model

22 # This is a variant of the Birthday Problem where we are interested

23 # in the number of distinct values produced

24 # http :// www.randomservices.org/random/urn/Birthday.html

25 def num_neighbors(n, v, rf, strategy="rack"):

26 k = 2 * v * (rf - 1)

27 if strategy == "rack":

28 # As cassandra is rack aware , we assume #racks == #replicas

29 # This is maybe a bad assumption for some datacenter

deployments

30 n = n - (n // rf)

31 else:

32 # SimpleStrategy

33 n = n - 1

34 estimate = (n * (1.0 - (1.0 - 1.0/n) ** k))

35 return max(rf - 1, min(estimate , n))

36
37 def p_outage_given_failure(recovery_seconds , num_neighbors ,

rate_in_seconds):

38 x = math.exp(-1 * recovery_seconds * num_neighbors *

rate_in_seconds)

39 return 1 - x

40
41 def global_rate(node_rate , nodes , split_probability):

42 return node_rate * nodes * split_probability

43
44 def recovery_seconds(size , bw_in , bw_out , neighbors ,

recovery=’streaming ’):

45 if recovery == ’ebs’:

15

https://github.com/jolynch/python_performance_toolkit/blob/master/notebooks/cassandra_availability/cassandra_availability.ipynb

46 return 60 * 5

47 return int(size / (min(bw_in , neighbors * bw_out)))

48
49
50 # Default model

51 nodes = 96

52 vnodes = 256

53 rf = 3

54 # 1000 gigabytes

55 node_dataset_mb = 300 * 1024

56 # MB/s

57 bw_in = 125

58 # MB/s, cassandra.yaml has 25MBPS as the default

59 # but most operators observe maybe half of that

60 bw_out = 25 / 2

61 strategy = ’rack’

62
63 year_seconds = 60.0*60*24*365

64 century_seconds = 100 * year_seconds

65
66 # Model machines that fail on average

67 # 25 times per century a.k.a 1 in 4 machines

68 # fails per year , or a machine fails every

69 # 4 years

70 arate = 25

71 arate_in_seconds = 25 / century_seconds

72
73
74 print("\nFailure Rate Variability")

75 print("Neighbors for {0} vnodes: {1:.3f}".format(1,

num_neighbors(nodes , 1, rf)))

76 print("Neighbors for {0} vnodes: {1:.3f}".format(4,

num_neighbors(nodes , 4, rf)))

77 print("Neighbors for {0} vnodes: {1:.3f}".format (16,

num_neighbors(nodes , 16, rf)))

78
79 aneighbors = num_neighbors(nodes , vnodes , rf)

80 arecovery = recovery_seconds(node_dataset_mb , bw_in , bw_out ,

aneighbors)

81 print("Neighbors for {0} vnodes: {1:.3f}".format(vnodes ,

aneighbors))

82
83
84 def outage_stats(

85 vnodes , failure_rate_per_century , num_nodes ,

86 rf, bw_in , bw_out ,

87 strategy=’rack’, recovery=’streaming ’):

88 neighbors = num_neighbors(num_nodes , vnodes , rf , strategy)

89 recovery_s = recovery_seconds(node_dataset_mb , bw_in , bw_out ,

neighbors , recovery)

90 p_failure = p_outage_given_failure(

91 recovery_s , neighbors , failure_rate_per_century /

century_seconds)

92
93 lmb = global_rate(failure_rate_per_century , num_nodes ,

p_failure)

94 return (

16

95 poisson.mean(lmb), poisson.interval (0.50, lmb),

poisson.median(lmb),

96 expon.mean(scale =1/lmb), expon.interval (0.50 , scale =1/lmb)

97)

98
99 # Returns outages _per century_

100 def compute_outage(

101 vnodes , failure_rate_per_century , num_nodes ,

102 rf, bw_in , bw_out ,

103 strategy=’rack’, recovery=’streaming ’):

104 return outage_stats(

105 vnodes , failure_rate_per_century , num_nodes , rf, bw_in ,

bw_out , strategy

106)[0]

107
108 print("{0:<6} {1:<8} {2:<8} {3: <8} -> {4:<6}".format(

109 "rate", "rec_s", "p_fail", "g_lmb", "outages"

110))

111 for rate in (12.5, 25, 50, 100, 200):

112 recovery_s = recovery_seconds(node_dataset_mb , bw_in , bw_out ,

aneighbors)

113 p_failure = p_outage_given_failure(

114 recovery_s , aneighbors , rate / century_seconds)

115 gl = global_rate(rate , nodes , p_failure)

116 p = "{0:6.2f} {1:6.2f} {2:8.6f} {3:8.4f} -> {4:6.6f}".format(

117 rate , recovery_s , p_failure , gl , poisson.mean(gl)

118)

119 print(p)

120
121
122 # In[2]:

123
124 plt.figure(figsize =(15 ,10))

125 plt.title("Cassandra Outages , {0} nodes".format(nodes),

fontsize =20)

126 plt.ylabel("Expected Number of Outages per Century", fontsize =16)

127 plt.xlabel("Number of Tokens per Node", fontsize =16)

128 plt.xlim(1, 128)

129 plt.axvline(x=96, color=’k’, linestyle=’--’, label=’cluster

size ={0}’.format(nodes))

130 plt.gca().grid(True , which=’major’, linestyle=’-’, color=’k’)

131 plt.gca().grid(True , which=’minor’, linestyle=’--’)

132 plt.gca().yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (4))

133 plt.gca().xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (4))

134 plt.tick_params(axis=’both’, which=’major’, labelsize =14, length =6)

135 plt.tick_params(axis=’both’, which=’minor’, length =0)

136
137 num_vnodes = range(1, 128)

138 rates = [12.5, 25, 37.5, 50]

139 for rate in rates:

140 outages = []

141 for vnode in num_vnodes:

142 outages.append(compute_outage(vnode , rate , nodes , rf,

bw_in , bw_out))

143 print(outages [:3])

144 plt.plot(num_vnodes , outages ,

label="rate ={0}/ century".format(rate))

17

145 plt.legend(fontsize =16)

146
147 outages = [outage_stats(v, arate , nodes , rf, bw_in , bw_out) for v

in num_vnodes [:32]]

148 outage_mean = [o[0] for o in outages]

149 outage_lower = [o[1][0] for o in outages]

150 outage_upper = [o[1][1] for o in outages]

151 outage_median = [o[2] for o in outages]

152
153 plt.figure(figsize =(15 ,10))

154 plt.title(

155 "Cassandra Outages , {0} nodes , {1:.2f} failures / Century

".format(

156 nodes , arate), fontsize =20)

157 plt.ylabel("Expected Number of Outages per Century", fontsize =16)

158 plt.xlabel("Number of Tokens per Node", fontsize =16)

159 plt.xlim(1, 32)

160 plt.gca().grid(True , which=’major ’, linestyle=’-’, color=’k’)

161 plt.gca().grid(True , which=’minor ’, linestyle=’--’)

162 plt.gca().yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (5))

163 plt.gca().xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (5))

164 plt.tick_params(axis=’both’, which=’major’, labelsize =14, length =6)

165 plt.tick_params(axis=’both’, which=’minor’, length =0)

166 plt.plot(num_vnodes [:32], outage_mean , color=’orange ’, label=’mean

outages ’)

167 plt.plot(num_vnodes [:32], outage_median , color=’orange ’,

label=’median outages ’, linestyle=’--’)

168 plt.fill_between(num_vnodes [:32] , outage_lower , outage_upper ,

color=’orange ’, alpha =0.05, label=’IQR’)

169 plt.legend(fontsize =16)

170
171
172 # In[3]:

173
174 # Hold failures constant , vary size of cluster

175 # Look at MTBF

176 plt.figure(figsize =(15 ,10))

177 plt.title(

178 "Cassandra Outages , {1} failures / Century ".format(

179 vnodes , arate), fontsize =20)

180 plt.ylabel("Expected Centuries Between Outages", fontsize =16)

181 plt.xlabel("Number of Nodes in the Cluster", fontsize =16)

182 plt.gca().grid(True , which=’major ’, linestyle=’-’, color=’k’)

183 plt.gca().grid(True , which=’minor ’, linestyle=’--’)

184 plt.gca().yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (4))

185 plt.gca().xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (5))

186 plt.tick_params(axis=’both’, which=’major’, labelsize =14, length =6)

187 plt.tick_params(axis=’both’, which=’minor’, length =0)

188 colors = plt.rcParams[’axes.prop_cycle ’]. by_key ()[’color’]

189 plt.gca().set_prop_cycle(’color ’, colors [0:1] + colors [2:])

190
191 num_vnodes = (1, 16, 256)

192 num_nodes = range(3, 300)

193 lines = []

194
195 for v in num_vnodes:

18

196 outages = [outage_stats(v, arate , n, rf, bw_in , bw_out) for n

in num_nodes]

197 outage_mean = [o[3] for o in outages]

198 outage_lower = [o[4][0] for o in outages]

199 outage_upper = [o[4][1] for o in outages]

200 line , = plt.semilogy(num_nodes , outage_mean ,

label="vnodes ={0}".format(v))

201 lines.append(line)

202 plt.fill_between(

203 num_nodes , outage_lower , outage_upper , alpha =0.1,

204 label=’vnodes ={0} IQR’.format(v)

205)

206
207 plt.xlim(3, 300)

208 plt.ylim (1/100.0 , 100)

209
210 iqr_patch = mpatches.Patch(color=’gray’, label=’IQR’)

211 plt.legend(

212 handles=lines + [iqr_patch], loc=’upper right ’, fontsize =16

213)

214
215
216 # In[4]:

217
218
219 # Hold failures constant , vary size of cluster

220 plt.figure(figsize =(15 ,10))

221 plt.title(

222 "Cassandra Outages , {1} failures / Century ".format(

223 vnodes , arate), fontsize =20)

224 plt.ylabel("Expected Number of Outages per Century", fontsize =16)

225 plt.xlabel("Number of Nodes in the Cluster", fontsize =16)

226 plt.gca().grid(True , which=’major ’, linestyle=’-’, color=’k’)

227 plt.gca().grid(True , which=’minor ’, linestyle=’--’)

228 plt.gca().yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (5))

229 plt.gca().xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (5))

230 plt.tick_params(axis=’both’, which=’major’, labelsize =14, length =6)

231 plt.tick_params(axis=’both’, which=’minor’, length =0)

232
233 num_vnodes = (1, 4, 16, 256)

234 num_nodes = range(3, 300)

235 lines = []

236 for v in num_vnodes:

237 outages = [outage_stats(v, arate , n, rf, bw_in , bw_out) for n

in num_nodes]

238 outages = [outage_stats(v, arate , n, rf, bw_in , bw_out) for n

in num_nodes]

239 outage_mean = [o[0] for o in outages]

240 outage_lower = [o[1][0] for o in outages]

241 outage_upper = [o[1][1] for o in outages]

242 line , = plt.plot(num_nodes , outage_mean ,

label="vnodes ={0}".format(v))

243 lines.append(line)

244 plt.fill_between(

245 num_nodes , outage_lower , outage_upper , alpha =0.1,

246 label=’vnodes ={0} IQR’.format(v)

247)

19

248
249 plt.xlim(3, 300)

250 iqr_patch = mpatches.Patch(color=’gray’, label=’IQR’)

251 plt.legend(

252 handles=lines + [iqr_patch], loc=’upper left’, fontsize =16

253)

254
255
256 # Hold failures constant , vary size of cluster ,

NetworkTopologyStrategy

257 plt.figure(figsize =(15 ,10))

258 plt.title(

259 "Cassandra NetworkTopology Outages , {0} failures / Century

".format(

260 arate), fontsize =20)

261 plt.ylabel("Expected Number of Outages per Century", fontsize =16)

262 plt.xlabel("Number of Nodes in the Cluster", fontsize =16)

263 plt.gca().grid(True , which=’major ’, linestyle=’-’, color=’k’)

264 plt.gca().grid(True , which=’minor ’, linestyle=’--’)

265 plt.gca().yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (4))

266 plt.gca().xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (10))

267 plt.tick_params(axis=’both’, which=’major’, labelsize =14, length =6)

268 plt.tick_params(axis=’both’, which=’minor’, length =0)

269
270 num_vnodes = (1, 4, 16, 256)

271 num_nodes = range(3, 51)

272 for v in num_vnodes:

273 outages = [compute_outage(v, arate , n, rf , bw_in , bw_out ,

’rack’) for n in num_nodes]

274 print(v, outages [:3])

275 plt.plot(num_nodes , outages , label="vnodes ={0}".format(v))

276
277 plt.xlim(3, 50)

278 plt.legend(fontsize =16)

279
280
281 # In[5]:

282
283 # Hold failures constant , vary size of cluster

284 plt.figure(figsize =(15 ,10))

285 plt.title(

286 "Cassandra SimpleStrategy Outages , {0} failures / Century

".format(

287 arate), fontsize =20)

288 plt.ylabel("Expected Number of Outages per Century", fontsize =16)

289 plt.xlabel("Number of Nodes in the Cluster", fontsize =16)

290 plt.gca().grid(True , which=’major ’, linestyle=’-’, color=’k’)

291 plt.gca().grid(True , which=’minor ’, linestyle=’--’)

292 plt.gca().yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (4))

293 plt.gca().xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (10))

294 plt.tick_params(axis=’both’, which=’major’, labelsize =14, length =6)

295 plt.tick_params(axis=’both’, which=’minor’, length =0)

296
297 num_vnodes = (1, 4, 16, 256)

298 num_nodes = range(3, 51)

299 for v in num_vnodes:

20

300 outages = [compute_outage(v, arate , n, rf, bw_in , bw_out ,

’simple ’) for n in num_nodes]

301 print(v, outages [:3])

302 plt.plot(num_nodes , outages , label="vnodes ={0}".format(v))

303
304 plt.xlim(3, 50)

305 plt.legend(fontsize =16)

306
307
308 # In[6]:

309
310 # Observe impact of vnodes on Scale Up Balancing

311 plt.figure(figsize =(15 ,10))

312 plt.title("Cassandra Balanced Scaling",fontsize =20)

313 plt.ylabel("Number of Nodes needed to Scale Up", fontsize =16)

314 plt.xlabel("Number of Nodes in the Cluster", fontsize =16)

315 plt.gca().grid(True , which=’major ’, linestyle=’-’, color=’k’)

316 plt.gca().grid(True , which=’minor ’, linestyle=’--’)

317 plt.gca().yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (5))

318 plt.gca().xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (5))

319 plt.tick_params(axis=’both’, which=’major’, labelsize =14, length =6)

320 plt.tick_params(axis=’both’, which=’minor’, length =0)

321
322 num_vnodes = (1, 4, 16, 256)

323 num_nodes = range(3, 256)

324 for v in num_vnodes:

325 scale_up = [math.ceil(float(n) / v) for n in num_nodes]

326 plt.plot(num_nodes , scale_up , label="vnodes ={0}".format(v))

327
328 plt.xlim(3, 256)

329
330 plt.legend(fontsize =16)

331
332
333 # In[9]:

334
335 # Observe impact of EBS on availability

336 plt.figure(figsize =(15 ,10))

337 plt.title(

338 "Cassandra Recovery Strategy , {0} failures /

Century".format(arate), fontsize =20)

339 plt.ylabel("Expected Centuries Between Outages", fontsize =16)

340 plt.xlabel("Number of Nodes in the Cluster", fontsize =16)

341 plt.gca().grid(True , which=’major ’, linestyle=’-’, color=’k’)

342 plt.gca().grid(True , which=’minor ’, linestyle=’--’)

343 plt.gca().yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (4))

344 plt.gca().xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator (5))

345 plt.tick_params(axis=’both’, which=’major’, labelsize =14, length =6)

346 plt.tick_params(axis=’both’, which=’minor’, length =0)

347
348 num_nodes = range(3, 300)

349 lines = []

350
351 # Plot fixed recovery speed

352 outages = [outage_stats (1, arate , n, rf, bw_in , bw_out ,

recovery=’ebs’) for n in num_nodes]

353 outage_mean = [o[3] for o in outages]

21

354 outage_lower = [o[4][0] for o in outages]

355 outage_upper = [o[4][1] for o in outages]

356 line , = plt.semilogy(num_nodes , outage_mean , label="EBS ,vnode=any")

357 lines.append(line)

358 plt.fill_between(

359 num_nodes , outage_lower , outage_upper , alpha =0.1,

360 label=’EBS ,vnode=any IQR’.format(v)

361)

362
363 outages = [outage_stats (1, arate , n, rf, bw_in , bw_out ,

recovery=’recovery ’) for n in num_nodes]

364 outage_mean = [o[3] for o in outages]

365 outage_lower = [o[4][0] for o in outages]

366 outage_upper = [o[4][1] for o in outages]

367 line , = plt.semilogy(num_nodes , outage_mean ,

label="streaming ,vnode=1")

368 lines.append(line)

369 plt.fill_between(

370 num_nodes , outage_lower , outage_upper , alpha =0.1,

371 label=’streaming ,vnode=1 IQR’

372)

373
374 plt.xlim(3, 300)

375
376 plt.legend(fontsize =16)

377
378
379 # In[8]:

380
381 import itertools

382 import random

383 import sys

384
385 def simulate(l):

386 return random.expovariate(l)

387
388 def offset(values , max_value=float("inf")):

389 nvalues = values [:1] + [0] * (len(values) - 1)

390 for i in range(1,len(values)):

391 nvalues[i] = values[i] + nvalues[i-1]

392 return [n for n in nvalues if n <= max_value]

393
394 def outage(o, f_i , t, neighbors):

395 failures = 0

396 neighbor_indices = range(0, len(o))

397 neighbor_indices.remove(f_i)

398 random.shuffle(neighbor_indices)

399 for n in range(int(round(neighbors))):

400 failures += near(o[neighbor_indices[n]], o[f_i], t)

401 return failures

402
403 def near(a, b, t):

404 failures = 0

405 for i in a:

406 for j in b:

407 if j > i + t:

408 break

22

409 if j - i > 0 and j - i < t:

410 failures += 1

411 return failures

412
413 def run_simulate(l, neighbors , nodes):

414 rs = []

415 for r in range (5):

416 o = [offset ([simulate(l) for j in range (300)]) for i in

range(nodes)]

417 maxes = [x[-1] for x in o]

418 m = max(maxes)

419 outages_per_century = (

420 sum([outage(o, i, arecovery / century_seconds ,

neighbors) for i in range(nodes)]) /

421 m

422)

423 print("Run {0} gave {1:.3f} outages/century".format(r,

outages_per_century))

424 rs.append(outages_per_century)

425 print("Simulation outages/century: ", sum(rs) / len(rs))

426
427 def run_simulate_naive(l, neighbors , nodes):

428 p_split = p_outage_given_failure(arecovery , aneighbors , l /

century_seconds)

429 l_split = l * p_split

430 l_global = nodes * l_split

431 print(p_split , l_global)

432 rs = []

433 for r in range (10):

434 events = 1000

435 o = offset ([simulate(l_global) for j in range(events)])

436 ##failure_years = [int(x/year) for x in o]

437 num_centuries = max(o)

438 rs.append(events / num_centuries)

439 print("Simple simulation outages/century: ", sum(rs) / len(rs))

440
441
442 print(p_outage_given_failure(arecovery , num_neighbors(nodes ,

vnodes , rf), arate))

443 print(vnodes , arate , nodes , rf, bw_in , bw_out , arecovery ,

num_neighbors(nodes , vnodes , rf))

444 print("Predicted outages/century:", compute_outage(vnodes , arate ,

nodes , rf, bw_in , bw_out))

445 #run_simulate(arate , num_neighbors(nodes , vnodes , rf), nodes)

446 run_simulate_naive(arate , num_neighbors(nodes , vnodes , rf), nodes)

447 #run_simulate(arate , num_neighbors(nodes , vnodes , rf), nodes)

23

	Introduction
	Cassandra Background
	Problem
	Analysis
	Availability Model
	Virtual Nodes, the Benefits
	Solutions to the Availability Problem
	Solution 1: Change the Number of vnodes
	Solution 2: Decouple Data Transfer from Recovery
	Solution 3: Replacing Hardware via removenode
	Solution 4: Stop Using vnodes Entirely

	Conclusion
	Appendix

