
Patterns in S3 Data Access
Protecting and enhancing access to data banks, lakes, and bases

Josh Snyder @ fwd:CloudSec, 2023

Synopsis

1. Preamble: AWS request signing

2. Problem: Complex-pattern data in S3 (e.g. data lakes)

3. Common solutions

4. Just-in-time access

Go watch this: https://www.youtube.com/watch?v=BOz2_hgoob4

https://www.youtube.com/watch?v=BOz2_hgoob4

Do not go implement

anything from this talk

without first watching

that talk!

Disclaimer!

Preamble: AWS request signing

Motivation: Josh's Photo Sharing Service

● Users (millions) upload their photos (billions)

● Photos are 1MB up to 1GB

● Photos are private by default
○ original uploader can always see their photo

● Photos can be added to albums (1->many relationship)

● Albums can be shared with other users (1->many relationship)

● Access to an album can be revoked at any time

● No photo needs to be super-popular (no CDN)

https://artifacts-911be34e61abfc8d.s3.us-east-1.amazonaws.com
/serverless/certs/dev/1608193965988-2020-12-17T08%3A32%3A45.988Z/certs.zip?
response-content-disposition=attachment
&X-Amz-Algorithm=AWS4-HMAC-SHA256
&X-Amz-Date=20230607T083045Z
&X-Amz-SignedHeaders=host
&X-Amz-Expires=300
&X-Amz-Credential=ASIA3LROMZGCSJI7XRXE%2F20230607%2Fus-east-1%2Fs3%2Faws4_request
&X-Amz-Signature=57121f2315ae365434e3b70b54e2e72d3b4a9bf93fa0e864c3a960da4457d9c4
&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBEaCXVzLXdlc3QtMSJHMEUCIAQWLf5nbq4T4PlfFoCc26X1aDgnLw%2BtR9fIpwL9
VFc5AiEAyFwpzVUB7%2BftMY%2BXVqzy3LZ2k%2FOMmaUs7H9bgZW%2FdSwqygMIWhACGgw3ODA3MDc2MTMwNjEiDJMAz
soSh3PhmuvJrCqnA0QsG0upWxiYAGjfFflqVXEL14cW8slX8qRFoeUUYvUUpAV2RoZACSI%2BJ8MgbYYmDpTDVe0Uc3FxFrFloy
EA3pDuzXlVFnN9x9tdw5p2QQms1MCKkdQpY6QoNvnD8z3vh4oK7lT0WFMcto2Hw6LCJIlruL2FfYgnGvN5bFBZzcgBTp2xZCUi0b
ExKdZcXZLpkE7Lu%2Bq4IAooox1IuqNVxdw00lGgeODpauSznSXLadQrIv4CC1Gw%2BMYuRMtfsB4P%2F0Rz5wpysfLSUcRsKRf
wxhh8jV9%2FtD4ECHtIrADGhvMVdmcYBtgFAhG9YWjAy78MnfyjmyoanHmdsMQKRXpsqQl%2Fzh%2BH%2FJX%2FnirVyGbmMH
czfvemRV8WA3OP2gc98qhLkgspGAy%2FowpWdnXctHHL3uIKDh3bq%2FX6hn6VwcL8lShztu67J1375Tu%2B4BdcBAM2yn8Ccm
KwyYlmLgFKNMVp%2BJk30V4zicbH9Ug9RAbvQNb52aLNFsp%2FIQ11OgDgvSYDqR9Y3cKW%2F3HZLxgxtsyerqZbJG87dp8X1
MzBKFxs6PKZGV91Fl1%2FITDy%2F4CkBjqUAm8M60CyphsIo2CF7i3sDKE%2FwBiEPKqKf%2Frrj8mDTwnCAAp3eS0OjD2ph8Q
3NDto0QiAeCh8DlYXgsNpjACeFANnqHCgIdB2%2BunKXps9%2FZg7mdaoVyEfUn2X874QtZ%2B62kus9%2Ff8%2BkroF92lip%2B
77%2BANKJ6DE%2BiETcf7F21D%2FRosmDfMfZLBeclJanxzdN5jlLk64e6kkJA0O77LC1hpzVotmKACNAfwJJCFNUsNPkYjMeKzF
Vj1KPLpS1xv3UyWV6SXfz9uYjFxCdzLWUqgqlK95WTgzDGvAog8CVKvV%2BVWqE6%2B1aX0K8dq4km5iml%2BXTlBUTlPLFiYq
CRXZLCU7hGli5NNDFPDNcdLxzrx%2FmZzB1SPWA%3D%3D

Signed URLs

Signed URLs expire (good!)

What are signed URLs?

● Portable capabilities (antique term, from the ~1970s and 80s)

● Cryptographically authenticated!

● Useful for browsers
● Not useful for API-based clients

Portable Capabilities!?!

● the whole point of capabilities is to flow through a

system

● this freaks security engineers out (pictured at

right)

● docs used to say this (below); it was removed

sometime late September–early October 2022

Making Signed URLs safer

● Options:
○ IP-binding

○ source-VPC binding

○ cookie-binding

https://github.com/hashbrowncipher/safer-signed-urls

https://github.com/hashbrowncipher/safer-signed-urls/

Every request in AWS is a
portable capability!

Cryptography of AWS Request Signing
(dangerously oversimplified)

1. Authentication
a. I send: HASH(AWS_SECRET_ACCESS_KEY || My Request) ||

My Request
b. Amazon computes: HASH(AWS_SECRET_ACCESS_KEY || My

Request)
c. If not equal: send HTTP 403 Forbidden

2. Authorization

3. Do the thing

4. Send the result

For more on SigV4: https://www.youtube.com/watch?v=tPr1AgGkvc4

https://www.youtube.com/watch?v=tPr1AgGkvc4

https://docs.aws.amazon.com/IAM/latest/UserGuide/create-signed-request.html

https://docs.aws.amazon.com/IAM/latest/UserGuide/create-signed-request.html

This talk should be* compatible with any service that uses SigV4 authentication, including:

● Google Cloud Storage

● Cloudflare R2

● Backblaze B2

● <your favorite here>

Hopefully the non-AWS users haven't left yet

Problem: complex-pattern data in S3

Motivation: Josh's Photo Sharing Service

● Users (millions) upload their photos (billions)

● Photos are 1MB up to 1GB

● Photos are private by default
○ original uploader can always see their photo

● Photos can be added to albums (1->many relationship)

● Albums can be shared with other users (1->many relationship)

● Access to an album can be granted and revoked at any time
● No photo needs to be super-popular (no CDN)

What isn't complex-pattern data?

● Lots of data ("billions of photos")

● Prefix-based layout by uploader ID

○ Very simple if no sharing is needed

○ /<user 1>/<photo 1>.jpg

What is complex-pattern data? (in other words)

● There are too many of them! (users, relationships)

● IAM doesn't know about them!

● Policy changes too fast!

Pivoting to data lakes

Photo Sharing Data Lake

Who? End-users Jobs (seconds -> days)

What code? Browsers Arbitrary code

Authentication username/password SSO portal

Cookie HTTP cookie X.509 certificate (or)
JWT

Access method Browser (HTTP GET) AWS SDK

Authentication to S3 Query string Authorization header

Similarities

● The callers run code we do not control
○ We cannot grant them unfettered access to the bucket

● We cannot reshape the data to fit the access problem (e.g. into nice prefixes)
○ and even if we could, shifting PBs of data doesn't sound fun

● We have a database of grants, relating callers to objects
○ the database can change rapidly

● There aren't enough IAM roles to model our callers

How do I secure my data lake?
(and some slightly easier problems, too)

Common solutions
(consider these first)

Overview

● Plain IAM (Weiss @ 5:12)
○ Tagged IAM principals (Weiss @ 19:42)

○ Permissions Boundaries

● Access Points (Weiss @ 25:02)

● STS Session Broker (Weiss @ 40:28)

Overview

See Weiss @ 3:35

"Plain" IAM + S3 Bucket Policy

● IAM is a slow-moving control plane service

● very low rate limit (<1 mutation / second)

● about 1000 roles, unless you go by account (Weiss @ 19:20)

○ inline policy: max 10 kB

○ attached policy: 6 kB (* 20 policies)

● S3 Bucket Policy (20 kB limit)

○ fits about 30 prefixes (Weiss @ 15:25)

Permissions Boundaries

● Gives an IAM role a way to create new IAM roles with fewer permissions

● Good for a group of services under common ownership
○ example: every Elasticsearch cluster owned by the ES team

● Useful for delegation
○ you delegate a set of permissions to the ES team

○ the ES team creates and manages policies under that boundary, without review by

security team

○ the roles can be used directly as IAM instance profiles

Create an S3 Access Point per caller

Weiss @ 34:55

● Multiply out your bucket policy
○ by 10,000 per account-region

● Also useful for delegation

● Doesn't fit dynamic

authorization

Let's build a proxy!

Weiss @ 36:05

● You can do anything!

○ Build your own

authorization layer

from scratch

● Spoiler alert: scalability

● S3 can do terabits / second

● Don't do it!

Weiss @ 40:28

● sts:AssumeRole creates

temporary credentials.

○ can pass Policy and

PolicyArn to downscope

the granted role.

● STS is a data plane service

STS Session Broker

STS Session Broker (drawbacks)

● Limit of 2048 characters in session policy
○ AWS_SESSION_TOKEN

● Account-wide ratelimit
○ Availability concern

Just-in-time authorization with
signing

A basic signer

$ curl -s -u josh:password \
 -d '{

"url":"https://s3.amazonaws.com/permanent/mykey",
"method": "GET",
"headers": {}

 }' \
 http://127.0.0.1:8000 | jq "."
{
 "url": "https://permanent-quoic7ui7jhvtjt6.s3.us-west-2.amazonaws.com/josh/mykey",
 "headers": {

"x-amz-content-sha256": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
"x-amz-expected-bucket-owner": "111111111111",
"X-Amz-Date": "20230610T124405Z",
"Authorization": "AWS4-HMAC-SHA256

Credential=AKIA3LROMZGCV47J47W6/20230610/us-west-2/s3/aws4_request,
SignedHeaders=host;x-amz-content-sha256;x-amz-date;x-amz-expected-bucket-owner,
Signature=7415160f39168fdb4fa47f67702c578ea3bcc97471743ff69933d518103fe473"
 }
}

github.com/hashbrowncipher/fwdcloudsec-signers

https://github.com/hashbrowncipher/fwdcloudsec-signers

A basic signer

$ curl -s -u josh:password \
 -d '{

"url":"https://s3.amazonaws.com/permanent/mykey",
"method": "GET",
"headers": {}

 }' \
 http://127.0.0.1:8000 | jq "."
{
 "url": "https://permanent-quoic7ui7jhvtjt6.s3.us-west-2.amazonaws.com/josh/mykey",
 "headers": {

"x-amz-content-sha256": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
"x-amz-expected-bucket-owner": "111111111111",
"X-Amz-Date": "20230610T124405Z",
"Authorization": "AWS4-HMAC-SHA256

Credential=AKIA3LROMZGCV47J47W6/20230610/us-west-2/s3/aws4_request,
SignedHeaders=host;x-amz-content-sha256;x-amz-date;x-amz-expected-bucket-owner,
Signature=7415160f39168fdb4fa47f67702c578ea3bcc97471743ff69933d518103fe473"
 }
}

github.com/hashbrowncipher/fwdcloudsec-signers

https://github.com/hashbrowncipher/fwdcloudsec-signers

Home directories

$ export USER=josh
$ echo $USER > myname; aws s3 cp myname s3://permanent/myname
upload: ./myname to s3://permanent/myname
$ export USER=alice
$ echo $USER > myname; aws s3 cp myname s3://permanent/myname
upload: ./myname to s3://permanent/myname
$ AWS_SKIP_SIGNER=1 aws s3 ls --recursive permanent-quoic7ui7jhvtjt6
2023-06-03 06:05:29 6 alice/myname
2023-06-03 06:05:20 5 josh/myname
$ USER=alice aws s3 cp s3://permanent/myname -
alice
$ USER=josh aws s3 cp s3://permanent/myname -
josh

Use our own credentials (e.g. JWT
or x.509) to talk to signer

Use awscli's existing event
hooks feature

awscli plugin

Can I change
responses?

● Like all things IAM, we can only

affect requests, not responses

● Without a proxy, we can't

change a response

Home directories: handling ListObjects(V2)

$ USER=josh aws s3 ls s3://permanent
2023-06-03 06:05:20 5 myname
$ USER=alice aws s3 ls s3://permanent
2023-06-03 06:05:29 6 myname

C: Hey 127.0.0.1:8000, could you sign this
ListObjectsV2 call please?
S: Sure! Your signed request is:
 GET /list?...
 Host: 127.0.0.1:8000
 Authorization: Basic am9zaDpwYXNzd29yZA==
C: <sends that request>
S: Here's a ListObjectsV2 response that
makes it look like your home directory is
the only one in the bucket.

Can I change
responses?

● Like all things IAM, we can only
affect requests, not responses

● Without a proxy, we can't change
a response

● BUT! We can selectively proxy
by rewriting requests:

○ to ourselves (e.g. previous
slide)

○ to an S3 object lambda access
point

○ to any other HTTP(S) service

How do I integrate
this with my data
lake?

1. (in the caller) add the signer as a shim

into your AWS client library

2. (in the signer) authenticate the caller

3. work backwards from key requested

to data entity (e.g. table or column)

4. determine whether the caller should

have access.

5. sign or reject the request Assume we're just signing, not
modifying the requested bucket or
key.

Does this work with
other AWS
services?

Yes!

…but you might prefer to just

use a proxy

e.g. DynamoDB

Does it multipart? Yes, most definitely

And you can cache!

Can I run the signer
as a lambda?

Yep!

Do I have to feel
comfortable running
the signer as a
service in prod?

Yes!

Should I worry
about latency?

Three components:

● Network

● Authorization

○ Caching!

● Signing

Scenario: My bucket is in the "wrong" account

Migration Solution:
1. Reconfigure the app to send all requests to the signer.
2. The signer routes writes into the new bucket.
3. For reads, perform a HEAD on the new bucket

a. If present, sign a request for the new bucket
b. If absent, sign a request for the old bucket

4. Copy the data in the background

Features that S3 doesn't have, but signers can simulate

● Atomic rename of one file

● Atomic rename of entire directories

● Symlinking (i.e. alias the most recent

version of a blob)

● Hard linking (i.e. instant copy)

● Transparent sharding of "hot" keys

● Time travel queries

● Customized data positioning (for regulatory

or lifecycle reason)

Thank you!

